Problem of the Day: Find the slope, x-intercept, and y-intercept from the graph.

Plan for the Day: Notes on slope-intercept form Finish test from yesterday

Logic puzzle for extra credit after test due Friday Homework Week 10 is due tomorrow

Objective: We will be able to identify parts of slope-intercept form.

Today is National Candy Corn Day!!

Example: For the given equation, find the slope, x-intercept, and y-intercept.

$$y = -2x + 4$$
 $y = -2x + 4$
 $M = \frac{1}{2} - \frac{1}{2}$
 $M = \frac{1}{2} - \frac{1}{2}$

One form of linear equations is called the slope-intercept form.

Any linear function can be written in this form in order to determine the slope and y-intercept.

$$y = mx + b$$
 or $f(x) = mx + b$
 $m = slope$
 $b = y-intercept$

Example: Identify the slope and y-intercept for the given equations.

a.
$$y = 4x - 8$$

 $m = 4$ or $\frac{1}{1}$
b. $y = -3/5x + 7$
 $m = -3/5$
c. $y = -x + 6$
 $m = -1$
d. $y = x + 2/3$
 $m = 1$
 $b = -8$
 $b = -7$
 $b = -7$
 $b = -7$

But what happens if an equation is not in slope-intercept form?

You can change an equation into slope-intercept form by solving for y (get the y by itself). y = mx + b

Example: 6x - 3y = 9 -3y = -6x + 9 -3y = -6x + 9 -3y = -2x - 3 -3y = -2x - 3

Example: Find the slope and y-intercept for each function.

a.
$$6x + y = 10$$

b.
$$f(x) = 12x - 35$$

c.
$$5x + 4y = 28$$

d.
$$3x + 2y = 5$$

e.
$$4x - y = 16$$

Special Cases:

For a horizontal line in the form y = #, the slope is 0 and the y-intercept is whatever number y =.

For a vertical line in the form x = #, the slope is undefined and the y-intercept does not exist.

Example: Find the slope and y-intercept.

a.
$$x = -4$$

b.
$$y = 6$$